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Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in
QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction
methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from
these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency
Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in
continuous variable QKD. © 2017 The Japan Society of Applied Physics

1. Introduction

Quantum key distribution (QKD),1–8) which can offer
unconditional security, is the most practical branch of
quantum information technology. On the basis of the basic
principles of quantum physics, including the uncertainty
principle and the quantum no-cloning principle, QKD can
enable the sharing of random secret bits between two distant
and legitimate parties (Alice and Bob) using an untrusted
quantum channel with the help of an auxiliary authenticated
classical channel. Two types of QKD protocols are currently
investigated, i.e., discrete-variable QKD (DVQKD)1,2) and
continuous-variable QKD (CVQKD).9–17) In DVQKD, one
can encode information on discrete variables of quantum
systems, such as the phase or polarization of single photons,
which can be detected by single-photon detectors, and the
raw keys are binary bit strings. In contrast, the CVQKD
protocols employ the quadratures of a quantized electro-
magnetic field to encode the key information, and the signals
measured by Bob are continuously distributed. Recently, the
CVQKD protocols have been proven to be unconditionally
secure against arbitrary attack in the asymptotic limit and in
the finite-size regime.18,19) The CVQKD protocols have the
merits of requiring only standard optical communication
technology and are expected to achieve higher secret key
rates at a relatively short distance. Moreover, they are robust
to the noisy photons in the quantum channel owing to the
mode selection of the local oscillator.

When a QKD system is running, various noises are intro-
duced owing to the nonideal preparation of quantum states,
the dark noises of photoelectric detection, and potential
eavesdropping behaviors, which unavoidably cause the raw
keys of the two parties to be different from each other and the
leakage of secret key information. Therefore, a key distilla-
tion process including information reconciliation and privacy
amplification is necessary. Information reconciliation is an
error-correcting protocol to correct the errors between Alice’s
and Bob’s raw keys, and is implemented by exchanging
error-correcting messages through an authenticated classical
channel.20) The privacy amplification procedure is used to
filter out the potential leakage of information to an eaves-
dropper (Eve) with two-universal hash functions and extract
secure keys. So far, the main reconciliation schemes for
Gaussian-modulated CVQKD include slice reconcilia-

tion21–23) and multidimensional reconciliation.24,25) At a very
low signal-to-noise ratio (SNR), the capacity of a binary
input additive white Gaussian noise (BIAWGN) channel is
approximately equivalent to the capacity of the physical
Gaussian channel. A multidimensional reconciliation scheme
that relies on a d-dimensional rotation operation to build a
virtual channel very close to the BIAWGN channel, when
combined with low-rate multiedge-type low-density parity-
check (LDPC) codes, can achieve high-efficiency information
reconciliation. However, because the capacity gap of the
two channels increases gradually with the increase in SNR,
the above approximation is no longer valid at high SNRs.
Sliced error correction (SEC)21) is an effective approach for
correcting errors of correlated Gaussian-distributed continu-
ous variables between Alice and Bob. Code-modulated
techniques [multilevel coding (MLC) and multistage decod-
ing (MSD)]26) with LDPC codes were proposed for channel
coding and error correction in SEC, and the reconciliation
efficiency of SEC was improved significantly.22) At relatively
high SNR, the slice reconciliation protocol has higher
efficiency than the multidimensional reconciliation protocol.
It is known that higher reconciliation efficiency means one
can extract more secret keys. To improve the reconciliation
efficiency, it is necessary to construct high-efficiency error-
correcting LDPC codes.

In this paper, we propose an efficient construction method
to design high-performance irregular LDPC codes for dif-
ferent code rates with a block length of 106. To this end, we
investigate various construction methods for LDPC codes
in detail and construct high-error-correcting-performance
LDPC codes with different code rates. A discretized density
evolution algorithm27) is used to obtain good node degree
distributions of irregular LDPC codes for the BIAWGN
channel. These LDPC codes are further applied to correct
errors of the Gaussian raw keys between Alice and Bob
through MLC=MSD-based slice reconciliation schemes.
Simulation results show that the reconciliation efficiency
can reach more than 95% for an SNR from 1 to 3 with frame
error rates (FERs) below 24%. The achieved reconciliation
efficiency is higher than previously reported values, to the
best of our knowledge.

The rest of this paper is organized as follows. In Sect. 2,
we theoretically analyze the reconciliation protocol and secret
key rate for CVQKD. In Sect. 3, we search for good node
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degree distributions by discretized density evolution and
differential evolution. Comparing the progressive-edge-
growth (PEG) algorithm and the random construction
method, we propose an effective method of constructing
high-performance LDPC codes for different code rates. In
Sect. 4, the results of our high-efficiency slice reconciliation
based on MLC and MSD are described in detail. In Sect. 5,
we give a brief conclusion.

2. Reconciliation protocol and secret key rate

Figure 1 depicts a schematic diagram of reverse slice
reconciliation based on MLC and MSD with side informa-
tion. The MLC scheme is a high-efficiency coding modu-
lation technique and encodes the binary sequence at each
level with a channel capacity rule. In MSD, the decoder of
each level employs the results of the decoders of its previous
levels, and such a joint iterative scheme is employed to
improve the performance of decoding.

Usually, Gaussian states normally distributed in the
phase space are used for CV-QKD schemes. After quantum
transmission, Alice and Bob have two correlated Gaussian-
distributed continuous variable sequences. Using mutual
information theory, the final secret key rate can be written
as ΔI = βIAB − χBE, where β is the reconciliation efficiency,
IAB is the classical mutual information between Alice and
Bob, and χBE is the Holevo information between Bob and Eve,
which is also called leakage information for reverse
reconciliation. In comparison with the direct reconciliation
scheme, reverse reconciliation, in which Alice and Bob use
Bob’s data to establish the secret key, can break the 3 dB
channel loss limit11,28) and has been exploited for long-
distance CVQKD systems. From the above formula, we can
see that the efficiency β directly affects the final number of
secret keys.

As shown in Fig. 1, the slice reconciliation scheme is
divided into two parts: quantization of Gaussian-distributed
variables and error correction based on MLC and MSD. The
efficiency β of a practical MLC=MSD slice reconciliation
protocol can be expressed as the following product:

�rec ¼ �slice � �code; ð1Þ
where the quantization efficiency of Gaussian-distributed
variables, βslice, is given by

�slice ¼ I½X;QðY Þ�
IðX;Y Þ ; ð2Þ

where Q(Y ) is the quantization of variable Y and IðX;YÞ is
the mutual information between Alice and Bob. The
efficiency of error correction, βcode, is given by

�code ¼
H½QðY Þ� �m þ

Xm

i¼1
Ri

I½X;QðYÞ� ; ð3Þ

where H[Q(Y )] is the information entropy of Q(Y ). Hence,
the efficiency of slice reconciliation can be calculated as

�rec ¼
H½QðYÞ� � m þ

Xm

i¼1
Ri

IðX;Y Þ ; ð4Þ

where Ri is the code rate for each level. The quantizer Q(Y )
divides the real line ð�1;þ1Þ into 2m disjoint intervals
by 2m − 1 equally spaced points. The quantization efficiency
βslice is maximized by maximizing I½X;QðY Þ� through the
selection of an optimal interval step for the chosen number
of intervals 2m. With 32-interval (m = 5) quantization, the
efficiency βslice can reach above 99.4% for an SNR from
0.86 to 3. The second step is the reverse error correction
with side information29) based on MLC and MSD. After the
discretization of Gaussian-distributed continuous variables,
Bob classifies them into m levels, each of which corresponds
to a bit sequence. Each level is encoded independently as
a syndrome by the error-correcting code with a rate Ri

(1 ≤ i ≤ m). Then, Bob sends the syndromes of the m levels
to Alice through an authenticated classical channel. On
the basis of the syndromes and her own Gaussian variables
(side information), Alice can recover Bob’s key.

It is known that the code rate of each level is bounded
above by the channel capacity. Here, we use Ropt

i to represent
the optimal code rate, and the following relation can be
obtained:

I½X;QðYÞ� ¼ H½QðYÞ� �m þ
Xm

i¼1
Ropt
i : ð5Þ

From Eqs. (3) and (5), the efficiency of error correction can
also be rewritten as

�code ¼
H½QðYÞ� � m þ

Xm

i¼1
Ri

H½QðYÞ� � m þ
Xm

i¼1
Ropt
i

: ð6Þ

Equation (6) shows that the efficiency βcode is highly
dependent on the rates of the error-correcting codes in
MLC and MSD. To improve the efficiency of slice recon-
ciliation, high-performance LDPC codes that perform at
rates extremely close to the Shannon capacity should be
designed.

3. Construction of high-performance long-length
LDPC codes

Some studies have indicated that irregular LDPC codes
with good node degree distributions exhibit a higher error-
correcting capacity than regular codes. Discretized density
evolution is an improved algorithm of density evolution30)

and has a low operation complexity. It uses a quantization
operation to discretize input and output messages of sum-
product decoding. Using this algorithm, we can calculate the
threshold values of message-passing decoding and obtain
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Fig. 1. (Color online) Reverse slice reconciliation based on MLC and
MSD with side information.
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very good node degree distributions of irregular LDPC codes
by differential evolution. In Table I, we show the optimal
node degree distribution pairs with code rates of 0.12 and
0.836 obtained under belief propagation for the BIAWGN
channel. Starting with the good node degree distribution
pairs, high-efficiency LDPC codes can be constructed.

It is well known that the performance of LDPC codes
gradually improves with increasing block length. Unfortu-
nately, the construction of the parity-check matrix of long
irregular LDPC codes is not straightforward. In the follow-
ing, four different construction methods are investigated and
compared: the PEG algorithm, random construction (RC),
quasi-cyclic extension based on RC (QC-RC), and quasi-
cyclic extension based on PEG (QC-PEG). In all cases of QC
extension,31) the length of the mother matrix is 105. To assess
the performance of the codes, the log-likelihood ratio belief
propagation algorithm with side information is employed
to decode LDPC codes over a BIAWGN channel, and the
maximum number of iterations is set to be 100.

For the rates of 0.12 and 0.836, we show the results of the
decoding performance of irregular LDPC codes with block
lengths of 105 and 106 in Figs. 2 and 3, respectively. In
QKD protocols, the privacy amplification requires that whole
blocks of bits are the same between Alice and Bob after
information reconciliation. To this end, the frame error rate
(FER) is adopted to evaluate the decoding performance.
Because it is difficult to construct LDPC codes with length
N = 106 by the PEG algorithm, the decoding performance is
not included (using an i7 CPU at 3.4GHz for a rate of 0.12,
the time consumed for the PEG algorithm is more than
5 days). From Fig. 2, we can conclude that the RC and QC-
RC methods have better performance than the QC-PEG
algorithm, and the performances of RC and QC-RC only
show a small difference. The runtimes of the RC and QC-RC
methods with 4-cycle-free are ∼50 and ∼10 s, respectively.
From Fig. 3, we can see that the LDPC codes constructed on
the basis of the three methods (QC-PEG, QC-RC, and RC)
have similar error-correcting performance characteristics for
a rate of 0.836. The time consumed for the QC-PEG, QC-RC,
and RC algorithms are 5195, 3813, and 54322 s, respectively.
As a result, on the basis of the performance and consumed
time, the RC method is considered superior at low rate codes,
while QC-RC is better for high rate codes.

4. High-efficiency reconciliation for Gaussian key

In the following, we apply the techniques developed in
the previous sections to the information reconciliation of
a Gaussian-modulated CVQKD system. Using an equal-
interval quantizer, the Gaussian-distributed continuous var-
iables are divided into five discretization layers each of which
forms a binary sequence. This operation maps the channel
into five virtual BIAWGN channels. In accordance with
the chain rule of mutual information, the optimal code rate

corresponding to the ith level for a given SNR can be
calculated as

Ropt
i ¼ 1 � ½Ið1Þ � IðsÞ�; ð7Þ

where I (s) is the mutual information of the ith virtual
BIAWGN channel for SNR = s.

The optimal rates for SNRs between 0.86 and 3 are shown
in Table II. Because the optimal rates of error-correcting
codes at levels 1, 2, and 3 are very low, the binary sequences
at these levels are not encoded and are directly sent to Alice,
which greatly reduces the decoding complexity of Alice
and the time consumed for information reconciliation. The
practical rates of the LDPC codes at levels 4 and 5 are
bounded above by their optimal code rates. To increase
the practical rate of each level, it is necessary to design high-
performance irregular LDPC codes.

On the basis of the techniques developed above, two
different strategies are adopted to construct large-block (106)
LDPC codes with different rates. For code rates below 0.8,
the RC method is utilized, while for rates above 0.8, the
construction is implemented through two steps. We first
construct a mother matrix using the RC method, and then

Table I. Optimal variable node degree distributions for two different code
rates.

Code rate Variable node degree distributions

0.120 λ(x) = 0.3379x + 0.1952x2 + 0.2338x6 + 0.1160x30 + 0.1171x59

0.836 λ(x) = 0.0970x + 0.2734x2 + 0.2832x9 + 0.0440x23 + 0.3024x39

Fig. 2. (Color online) Decoding performance characteristics of irregular
LDPC codes with code rate of 0.12 for different block lengths. QC-PEG and
QC-RC represent QC extensions based on the PEG algorithm and RC
method, respectively.

Fig. 3. (Color online) Decoding performance characteristics of irregular
LDPC codes with code rate of 0.836 for different block lengths.
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extend the mother matrix to large-block LDPC codes by the
QC extension. These irregular LDPC codes are further
applied to the error correction encoding and decoding of
levels 4 and 5, which enables us to achieve high-efficiency
information reconciliation with efficiency above 95% and an
FER below 24%. Table III shows the achieved reconciliation
efficiencies for SNRs from 0.86 to 3.0 and the related
parameters used in reconciliation. The maximum numbers of
decoding iterations at levels 4 and 5 are set to 180 and 60,
respectively.

By considering decoding failures with the FER pfail, the
effective secret key rate for a QKD system can be rewritten as

�Ieff ¼ ð�IAB � �BEÞð1 � pfailÞ: ð8Þ
In a CVQKD system, to achieve a long-distance trans-

mission (high channel loss), the reconciliation efficiency β
is more crucial than the FER. This is due to the special
characteristics of CVQKD: each signal pulse sent by Alice
will be detected by Bob and used to extract a secret key, and
in the case of high channel loss, χBE will be very close to IAB:
χBE → IAB. Therefore, typical β values of at least above 0.9
are required to ensure a positive secret key rate according
to Eq. (1). To reach such a high β at a low SNR, the FER will
increase to the order of 10%25,32) unlike its counterpart in
DVQKD, where the FER can be as low as 0.1%. It note that
one can still achieve a high secret key rate even at a relatively
high FER.

Table IV shows our information reconciliation results
for CVQKD and those reported previously. There are two
reconciliation schemes: reconciliation based on binary codes
and that based on nonbinary codes. Using high-performance
binary irregular LDPC codes, we can achieve higher recon-
ciliation efficiency. Note that reconciliation based on non-
binary LDPC codes also exhibits good efficiency at an SNR
of 3,32) while it has a higher computational complexity.

Note that information reconciliation can affect the security
analysis for QKD.33–36) For CVQKD, the error correction
leakage lLE ¼ H½QðY Þ� � �recIðX;Y Þ, which depends on
the reconciliation efficiency, is an important parameter for
security analysis.18,19,37–39) It has been shown that the one-
way slice reconciliation technique based on a linear error-
correcting code discussed in this paper is compatible with
the composable security proof for CVQKD with coherent
states.19)

5. Conclusions

In this study, for SNRs between 0.86 and 3, we achieved
high-efficiency information reconciliation for CVQKD based
on the slice reconciliation protocol. Using a discretized
density evolution algorithm, we acquired very good node
degree distribution pairs of irregular LDPC codes. As a result
of investigating and comparing various code construction
methods, including the PEG algorithm, random construction,
quasi-cyclic extension based on random construction, and
quasi-cyclic extension based on PEG, we proposed a con-
venient and efficient construction method for designing high-
performance irregular LDPC codes with a block length of
106. As a result, high-efficiency Gaussian key reconciliation
was successfully realized with an efficiency above 95% and
an FER below 24% for SNRs above 1.
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